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Representing multiqubit unitary evolutions via Stokes tensors
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For the Stokes tensor parametrization of a multiqubit density operator, we provide an explicit formulation of
the corresponding unitary dynamics at the infinitesimal level. The main advantage of this forréanty
reminiscent of the ideas of “coherences” and “coupling Hamiltonians” of spin sysisrtisat the pattern of
correlation between qubits and the pattern of infinitesimal correlation are highlighted simultaneously and can
be used constructively for qubit manipulation. For example, it allows us to compute explicitly Rodrigues’
formula for the one-parameter orbits of nonlocal Hamiltonians. The result is easily generalizable to orbits of
Cartan subalgebras and allows us to express the Cartan decomposition of unitary propagators as a linear action
directly in terms of the infinitesimal generators.
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[. INTRODUCTION tion,” its starting point being a formula for the decomposi-
tion of nonlocal commutators in terms of local commutators
The easiest and most promising type of “quantum netand anticommutator&ee the Appendix practically it corre-

work,” i.e., of a collection of quantum systems to be manipu-sponds still to replacing a conjugation action on matrices
lated individually or jointly for the purposes of quantum in- With & linear action on the vector obtained by stacking the
formation processing, is by far composed of qubits, i.e., ofcolumns of the tensor. In particular, when operations are lo-
collections of two-level systems. In Rdll] we investigated _cal, a unitary transformatlon reduces to a multilinear action,
the use of a particular tensorial representation of such sys:8- & linear action on each piece of the Stokes tensor. When
tems which generalizes the idea of itadfine) Bloch vector instead nonlocal transformations are used, their infinitesimal

parametrization of a single qubit to two or more qubits anogeneratprs are no longer acting multilinearly and multispin
which is of widespread usewith minor variations undér correlations are induced. In this case the notation highlights

different names, such as cluster operatd@isor, in the lt- which qubits are involved in each nonlocal gate. As a matter
' ; pera ’ of fact, the major advantage of the formalism is that both the
erature on nuclear magnetic resona(d®R) spectroscopy,

f hi f pattern of correlations of the density tensor and the pattern of
product operatorf3,4]. In Ref. [1] this tensor was referred 10 ihe coyplings at the infinitesimal level become very transpar-
as “tensor of coherences” but, following Reff5—8], the less

{ : ent, as both are decomposed with respect to the same basis of
ambiguous name of Stokes tensor will be used there]afterobservables. In particular, they both show the same hierarchy
Our Stokes tensor could be considered an unfolding of thef correlationgthat originate from the affine structure of the
“nonsymmetric real density matrix” of Ref9] especially  tensors and of the corresponding Lie algebras of geneyators
suited to emphasize the Lie algebraic point of view of thewhich allows one to keep track of the reduced dynamics and
equations of motion. It is also closely related to multiparticlereduced densities in a natural way. The idea of associating
spacetime algebrgl0]. coherences to the degrees of freedom of qubits, and of ma-
The scope of the present paper is to discuss how the difipulating qubits through the corresponding Hamiltonians, is
ferential equations describing unitary dynamics can be forcommon for example in the literature on spin systems in
mulated in the Stokes tensor basis. The idea that the unitamagnetic field§4,11-14. However, the principles apply to
evolution of a qubit density matrigpure or mixed given by  any network of qubits. The price to pay is a larger dimension
the Liouville-von Neumann equation becomes a linear vecfor the matrices representing the infinitesimal generators:
torial ordinary differential equation for the Bloch vector is while the size of the Hamiltonians grows dsi2 the number
generalized to multiqubit densities. Mathematically, thisn of qubits, in the adjoint representation it grows &s 2*".
could be thought of as “passing to the adjoint representa- As an example of the insight gained into the dynamics of
the system, we compute explicitly the integral flow of any
nonlocal(constant Hamiltonian by means of Rodrigues’ for-
*Electronic address: altafini@sissa.it _mula[lﬂ, which expresses the sum of the expor_1er_1ti_a| s_eries
10ften the concept of “coherence” is associated with the off-I" terms of the first and second power of the infinitesimal

diagonal elements of a density matrix. More generally, it is alsod€nerator. Since a Cartan subalgelil contains only com-
used to identify states that are not eigenstates of a given Hamiuting vector fields, the multiparameter orbit of a set of
tonian, and in this case even a nonrandom diagonal density operatgnerators belonging to a Cartan subalgebra also admits an
may vield a nontrivial “coherence” contribution. Lendi's “coher- €xplicit integration. The Cartan decomposition then becomes
ence vector” is defined even more generally as the vector of expe@ concatenation of local and nonlocal linear actions that can
tation values of a complete orthonormal set of Hermitian matricespe expressed directly in terms of the infinitesimal generators,
see Ref[25]. The Stokes tensor is just a tensorial version of therather than of exponentials. Such a decomposition has re-
coherence vector parametrization. cently attracted considerable attention as a tool for construct-
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ing universal quantum gates which are optimal in the sense& {0,1,2,3, so that a linear representation of @ad given

of minimizing time or complexity{11,17. by (aad )u= §k with the 4x 4 matrices aad eaS|Iy com-
A couple of other examples are discussed, mainly focuseg@yted from Eq(l)

on the manipulation of qubits in the presence of entangle- . - -

ment. In particular, we show how to create entanglement at a 1000 0100
distance between qubits that are not directly coupled accord- 0100 {1 000
ing to two different schemes, one in which the entanglement aad = \2 001 o0l aad, =2 000 ol
is distributed via an entangled ancilla, the other vigak
ways separable ancilla as in R€fL8]. [0 0 0 1} [0 0 0 0
0010 0001
Il. LIE BRACKETS AND ADJOINT REPRESENTATION
FOR SPIN-2 SYSTEMS aad =12 0000 , aad =2 0000 _
20 2 1000 3 0000
A. One spin 0 0 0 0] 100 0
Consider the rescaled Pauli matrices and identity matrix
N _i{l 0] \ __{0 1} B. Two spins
°"\2l0 1]" T 2[1 of Call Aj=\j®\y, j,ke{0,1,2,3. Up to a constant, the
Aj form the so-callecbroduct operators basig3], and are
110 —i 111 O subdivided into zero-spin operatdis,g), one-spin operators
Ao = E i 0 A3 = \_* 0 -1’ (A1, Ao Aoz A1 Aog Agg), @nd two-spin operator(s(\ll,
A12! A13, A21, A22, A23, A31, A32, A33) The Set Of +Ajk
with the commutation relations i, ke{0,1,2,3 contains a basis of the nine-dimensional ten-
B - sor product Lie algebrau(2) ® su(2) plus a basis of the six-
(NoMd =0, [N1,h2] =V2iks, dimensional “tensor sum” Lie algebras(2) ® su(2) arising
- — from the one-spin operators. Asi)gé&su(2), SO
[N2Ag] = V2iNg,  [Ag,N1]= V20N, —iAgo ¢ su(2) ®@su(2) and -Agg e su(2) ®su(2). From Eq.
and the anticommutators (A3)
{)\J;)\k} = V”§6jk)\05 [AjkuAIm] = [)\J ® )\kv)\| ® )\m] = adAjkAIm = ad\j®}\k)\| ® )\m
~ = %(D\j,)\l] ® (N At + {Nj M} © [N A])
{NjNob ={No N} = V2, (1)

= %(aqjx, ® aad A\m+ aaqjm ® ad\ Ay (2
j.ke{1,2,3. The operator “ad” is defined as follows:

aq\ WEPYBWIE =3, ]k)\li where operations involving the 0 N terms of the adjoint re_pregentatiqn, EQ) can be ex-
index only produce a null resuItJOk—c-O:c-k—O Using the pressed as a 4-tensor, which in turn is a function of the two
]

|
“structure constantst}, we obtain an “adjoint basis” associ- 2-1€NSOrTj ands;, because

ated to the; matrlces given by the four 44 matnces ad, =ad ., = E(adA ® aad, +aad ® aq\k) (3)
ad,,...,aq, of purely imaginary entnesaq\ )= c
consists of elements
000 O
d.=0 o =000 O (ady I = 3(cf ® sl sf ® cfy), 4)
aag = , aad_ =va ,
o T ! 000 -1 so that Eq(2) becomes
001 O _ PAA —1/P o O p q
[Ajio Aim] = (adz\j®)\k)lmqu_ 3(Cji ® Sgm* S| ® G Apgs
0 0 00 00 0 O (5)
ad, =12 0 0 01 ad_=\2 00-10 where we have used the summation convention over re-
=Yoo o o ol s Yo 1 0o ol peated indexeg¢in the range 0—8 For j#0 andk+0, the
0 -10 0 00 0 O —iadA_k of Eq. (3) form a basis of the adjoint representation

of 5u(2)®5u(2), ad,2)esu2)=50(3) ® s0(3). The remaining
The Pauli matrices are such thatg, —ik,, and thzforma  elements account for the affine structure ie., for
basis of s2), while the 4ad,, j=1,2,3,form a basis of  ad,, ., =50(3) ©50(3). As ¢} ands],, are 4x 4 matrices,
s0(3)=ad,, the adjoint representation efi(2). The “anti-  the resulting Kronecker product gdis a 16x 16 matrix.
adjoint” operators agd j=0,1,2,3, caralso be defined in - However, it has a row and a column entirely composed of
the same fashion as thexad e., by means of X4 matrices  zeros in correspondence 6f,, and, givenA, with jk # 00,
obtained from aaAd)\k N NG = =2, élkm, ikl [ Ay, with (Im) # (00) such that agjkAm:Aoo. Furthermore,
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adA being the trivial matrix of all zeros, it is not a basis obtain an affine tensorial representatlon of the density opera-

eIement in the adjoint representation. Also in the adjoint reptor of n  qubits: p=g1’ '“A o+ ke{0,1,2,3, k
resentation the index 0 in a slot corresponds to trivial dynam-< {1, ... n}, with g1 n= tr(pA “in ) "the expectation value
ics in the corresponding site. For example, for the observableA; . . This representatlon has several
1 1 advantages which are brlefly recalled below.
adAjo = E(aq\j ® aaq0+ aaqj ®0)= an\j ®l,. (6) (i) It captures all degrees of freedom of a density opera-
/ tor.
(i) Each termglrin in the tensor depends on a certain
C. n spins number of qubits: this is uniquely determined by the number

In the n-spin caseA; ..; =\; ® - @\, jy€10,1,2,3, of nonzero indexes in the sequenjge--j,. The pattern of
ke{l,...n}, are the lbe;sis elements. The Lie bracketnonzero indexes also identifies which qubits are involved.

[A; A ] can be computed according to the roiel) (iii) All correlations of all orders and all reduced densi-
FOJrl e;amﬁcl).leknfomzi% from Eq.(Ad) " ties are already contained in the tensor: tracing out a qubit

means collapsing the corresponding index to 0 and rescaling
[Ajki» Ampgl = %(ad\j)\me@ aaqk)\p@) aaql)\q everyt_hing by 2. ~ For fxgmple, if pAZ...AHZtrAl(p)
:QJZ"'lnAJ. oo thenglz"'Jn:VfZQ lz"'Jn;

+ aaqj)\m ® aq\k)\p ® aaqlxq iv) Sirztcen

+ aaqj)\m ® aaqk)\p ® adAI)\q

+ aqj)\m ® ad Ap ® ad, Ag)

tr(AjAim) = 81 ms (8)
j.k,I,me{0,1,2,3, the degree of mixing becomes the Eu-

:;ﬁ(aq\j ® aaqd ® aad + aaq{j ® ad, ® aaq, clidean norm ofp!r "In,
+ aaq_ ® aad, ® ad, 3
tr(p)= 2 (elr"In)? 9
+ aq ®ad, ® a@\)m nrst i1, =0
C]m ® Sp® Sq + S ® Cip ® Slq and hence, since® °=(1/V2)", for (j;---j,) # (0---0) the
+ s}m ® Sep ® Cig + cjm ® Cep ® Cigdmpfrst tensor ol ine SY2CRYL with O<r<1-(o® 9)?
(ad )I‘Sth (7) =\,’1_(1/2)n.
Ajia/mpgf trst: (v) Complete mixing corresponds t&0 (i.e., to the null
Remarkably, the building blocks needed for thgubit case tensor except for the affine const
are just the structure constandg and sy computed above. (vi) Pure states correspond itey1-(1/2)".

For n spins, the affine structure propagates itself throughout (vii) Factorizability corresponds o' J”‘Q“QJZ ol

and determines a hierarchy of subalgebras of tensor produgthere Q'l =(\2)" 101190 i the four-vector of the reduced
and tensor sum type. Thé A .. , (ji-jn) # (0---0), form denS|typAl_trA2~~~A (p) and so orf.

a joint basis of the Le algebrassu(2)®",  su(2) (viii) Partial transposition of a qubit becomes a change of
®su(2)*™Y, ... su(2)@ - ®su(2) (plus all factor permu-  sign in the terms having index 2 in the corresponding slot,
tations and -iadAjl_‘_jn, (ja-++jn) #(0---0), a joint basis of for example

a.dsu(z)@n, aqu(z)eaﬁu(z)@(n—l), ces ,aqu(z)@.‘@ﬁu(z) (plUS, again, all O

| . = %2 InAg i o2z
factor permutations In both notations, the number and po- P “1=€"> "Moj, QM2 A, = 0% A, g
sition of the indexes “0” uniquely determine which spins are + Q3j2"'j”A3j2~-~jn (10)

involved in the -'radAj .
.

n

and so on.
(ix) Checking bipartite entanglement can be done by the
simple test(10).

[ll. UNITARY EVOLUTION IN TERMS
OF THE STOKES TENSOR

For qubits, the same basis eIemem;%..jn that describe
the infinitesimal generators can also be used for the density B. Liouville—von Neumann equation
operators. This is well known in the literature on spin sys- ) . . )
tems[3], and can be formalized in terms of4 X --- X 4 The Liouville-von Neumann equation for thequbits
tensors which we call Stokes tensors. See Réfg,6,19-21  densityp is
for an overview. The purpose of this section is to show how
Stokes tensors and adjoint representations fit together in the?|, the context of our parametrization, the term “tensor” is not
description of the unitary dynamics of multiqubit densities. equivalent to the notion of “density which is a tensor product” and
should not be confused with it. Every density admits a Stokes ten-
) . sor, even if it is nonfactorizable or nonseparable. In these cases, the
This section follows Ref{1]. TheAJ-l.“]-n form a complete  corresponding Stokes tensors will be nonfactorizable or nonsepa-
orthonormal set of Hermitian matrices and can be used toable.

A. Density operators and Stokes tensors
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—i[H,p]=-iady(p), (12) andk =+ 0, the evolution of the two qubits becomes coupled.

) o Similarly to the two-qubit case, if we have qubits we
whereH=H" is the Hamiltonian of the system. From Sec. Il, obtain

we have thaH=hivInA; _; j,e{0,1,2,3, ke{l,... n}.
If we have two qubits, then, in terms of the Stokes tensor, oPr Pn=—jhirin(ad, )Ell'.':lr()ngkl---kn,
EqQ. (11) corresponds to i n

ihik where aq.  is computed as in Sec. Il C.
%= - i ady ™= - (e © Sl ) & o™ .., 18 COMP
(12 IV. INTEGRAL FLOW OF NONLOCAL HAMILTONIANS
In order to show Eq(12), deriveoP9=tr(pA,,) and use Eqgs.

2 and/(8): We first restrict to two qubits, although all arguments gen-
(4) and(8): eralize ton qubits. To begin with, we give an explicit for-

0PI =tr(pA o) = tr(—i[H, p]Apg) = tr(= ihM [ Ay, Ajp]o'™A mula for the integral of each “elementary” generatoy.
¢ Piva e ik Aml@ Ao From Sec. IlA, we have that Qdaq aaqjad\ =0.

— _i_ jk I This implies that the series ex ansllon d

_tr< 2h‘ (€ ® S+ S} ® Ca) A s mqu> g Fl)t)P/ Yo 1 I FI) | edpad, )
=20 phad; has a particularly simple expressmn
since for allp

i
=- Eh'k(cjﬂ ® S+ S ® Co) @M (ArsApg)

1
i adi =—(ad ® aad +aad @ ad).
== (e @ S+ 8] @ @M pdsg K2 e

P The powers of ap and aag;l are easily computed smcezad
=- Ehjk(cﬁ ® iyt sh @ cle™. and aa§i are diagonal and “complementary”:

o fh | ot | (i) if J—1 a‘f =2(333+ 644, aa(i =2(311+ 629);
The component of the Hamiltonian alorg, is irrelevant:
even if h%#0 it has no effect, since ik*ad, =0. The (i) i j=2, a(f =252+ du), aa(i =211+ b59);

meaning is similar to the single-spin case: global phases are (iii) if j=3, a(f =2(820% 633, aati =2(311+ O44);

neglected in Eqs(11) and (12). _ so that aﬁi +aad =21, Cubic powers instead are 3ad
Since Eq(12) is a linear system, if the coefficierité are _2aq and aaf(i —éaaq hence aﬁl —adA We can there-
constant the integration can be carried out explicitly, fore epr|C|tIy write down the sum of the series as
@Pi(t) = (7", Pdom(0) (13) -
Notice that when two-spin generators are lackité=0 exp-itady ) =14 ® 14~ i<t_ 315" "')ad/\
0j #0 andk# 0, i.e., when only local operations and classi- o
cal communicationLOCC) are performed, the exponential (_t_ r ---)a
in Eq. (13) splits. In fact,[Aj, AqJ=0 and therefore the 21 4l A

infinitesimal generators\;, and Ay, can be “reduced” as
well. Using Eg.(6), the unitary propagator in Eq13) be-  or, adding and subtracting %}9

comes
-it(%ad) #hfhady ) exp(-itady ) =1, ® I, ~i sin(t)ad, - (1- cost))adijk,
= (e—ithjoadAjo)(e—ithOkadAOk) (15
= (e tM°12ad ) o | V(] eit(h%\2)ad, , where the extra terms added are needed_ because the zero-
(« _ )@ 1a)(la® ( V) order terms do not match;®1,#ad . Notice that a for-
where the factor 1Y2 comes from Eq(6). Therefore, mula equivalent to Eq15) was used for the same purposes
it(hi% 2)ad, -it(h%/\2)ad, as ours in Ref[9]. Both are tensorial versions of Rodrigues’
(e )@ (e ) formula for rotations; see Re22], p. 291 or{23], p. 28. The
1 0 1 0 splitting is into skew-symmetric
0 Sa3) 0 SQB3) (14) (- |adA) and symmetric partgl,®1, and a@) of the

flow Notlce that both tad, and a@k are sums of tensor

J
products of matrices. The nonlocahty of the Hamiltonian of
Eq. (15) is reflected in the fact that we do not obtain a

which allows the state to evolve on at most a six-parameter
orbit sitting inside the 15-dimensional affine sphé}é with

r defined as in Eq(9). If p(0) is separable, then so is the
resultp(t) of evolving it under Eq(14) for all t, and hence
the six-dimensional manifold contains all the separable ®The sign difference with respect to the standardB®rmula is
states. When instead the Hamiltonian Hels~0 for j#0 due to the fact that here the skew-symmetric generato'raidAj—k.
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“single” tensor product but rather a sd‘rﬁ:learly the overall catenation of bilocal exponentials of the form shown in Eq.
evolution of Eq.(15) is orthogonal. However, the single (14) and of the nonlocal exponential of E(L8). In other
pieces do not describe rotations, either locally nor globally. words, any unitary operation acting on the Stokes tensor of a
The same argument can be repeated for any numbéwo-qubit density can be written as a product of the follow-
of qubits. For example, for three qubits we haveing form:
—i =% —it)P/p! i
expl 'tadAikl) 2p=o((=11) /p.)adjjkl, with (e—i(aiol\i)ad)\j) ® (e—i(uzOk/\E)aq\k)

1 : . :
ad, = L(ad) o aad, © aad, + aad, o ad; @ aad, xexpt-iglad, Jexp(- i f%ad, Jexpl- i64ad, )
_i(0) > _i( 0k >
+ aa(fj ® aad, ® adf + acjjj ®ad ©ad), (16) X (e7107h2ad ) g (gl h2)ady)
where now aﬁjH:%adAjkl. The sum of the series is then  for reala®, i, andy*. Each exponential can be replaced by

the corresponding sum of tensdgiven by Eq.(15) for the
itad, )=15%—| 5§ t q nonlocal pieces and by eéqfitad\j):lﬂ,—(i/\“““2)sin(\“"Zt)aq\j
exp(-itady, ) =1,"~iV2Z si V2 ath, —(1/2)(1—cos{\s“‘Zt))adfj for the one-parameter orbit of a

¢ single qubit.
- 2(1 - CO{?))aOijk,- (17)

\ V. EXAMPLES

So far we have only considered a single “coordinate di-
rection” (A, for the two-qubit case The formulas, however,
extend in a straightforward manner to linear combinations o
commuting generators, even depending on more than o
parameter. A maximal orbit of integrable flow is obtained
obviously in correspondence to a Cartan subalgéb8al 7,
i.e., a maximal commuting subalgebra in the Lie algebra o
nonlocal operations of the system. For the two-qubit case, |
us concentrate on the “nonlocal subalgebra’,@d., )
=s50(3) ® s50(3). A Cartan subalgebra is, for example, given
by aq):spar{—iadAu,—iadAzz,—iadAgg} (or by spafi-iad, ,,
—iadA2 ,—iadASS}, etc) where b is a Cartan subalgebra in It is well known that since the elementary gates of a quan-
su(2)®su(2): h=spaf—iAy;,—iA,, —iAsst. The three- tum computer are discrete unitary operations, they can be
parameter orbits of such subalgebra are integrable, as can Bgitten in terms of the corresponding infinitesimal Hamilto-

In Sec. V A it is shown how the discrete unitary propaga-
for corresponding to a standard two-qubit gate, the controlled

OT (CNOT) gate, is expressed in terms of the Stokes tensor.
n the three-qubit example of Sec. V B, entanglement be-
tween two “distant” qubits is achieved by indirect coupling
hrough an entangled ancilla. In Sec. V C, the scheme of Ref.

8] is used for the same purposes, but in this scheme the
ancilla remains separable for all times.

A. CNOT gate

seen by the splitting of the exponential, nians. In particular, in the literature on quantum information
o ” . processing by means of NMR spectroscdplythis was done
exp(—i(B"ady  + B7ad, ,+ f*ad, ) in terms of the product operators basis, of which our formal-
_ ol 22 .33 ism is just a variation. For example, in the computational
=exp-if ad,, Jexp(-ip7ady, Jexp~if>ad, ) basis of two qubit§00), |01), |10), |11), the Hamiltonian of
(18)  thecnNoT gate
for real B. The “marginal” subalgebra of local operations 1000
50(3) @ s0(3) does not commute with the Cartan subalgebra. 000 1
It is known[16] that[so(3) ®s0(3),ad,] generates the entire Ucnor=
15-dimensional Lie algebra(3) ¢ s0(3) Uso(3) ® s0(3) and 0010
that “exponentiating” this splitting gives the Cartan decom- 0100
position of the corresponding Lie group. When an arbitrary
two-qubit gate, call itU,, is constructed by means of the IS given by
Cartan d iti f , th
artan decomposition of S4), then 00 0 0
U= Uy, ® Upeexp(— (B A1+ B2Az+ B¥Asy) Ho T 0 1 0 -1
XUy, ® Uy, N7 210 0 0 0
0 -10 1

with Uj,,U;, e SU?2), j=1,2, and itsaction on a density

operator is by conjugation. With our formalism, such a CoN- | terms of the A this is Heyor=m/2(Agg-Ags=Asg

jugation action becomes a linear action, obtained by the con- - .
Jug ' y +A45), and therefore fop’k we have the orthogonal matrix

“This does not mean that we have separable superopefagirs Renor = €712 (@ady mady mady rady )
however, since unitary operators yield “pure” quantum operations
[27]. which computed by means of E@®) yields
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Renot=

O O OO O o o o o o

O O OO O O O o o o o o o
|
=

O O OO r OO0 OO0 OO oo o o o o
O P OO OO O 0O 0O oo oo o o o
|
o
O O O 0O OO0 O PFr OO0 O oo o o o o
P O O O O 0O OO 0O oo o o o o o
O O O OO0 OO r OO O o o o o o o
P o P HoOo g do 9 o[ olo[C o]o

O O OO 0O O 0O o oOopkr oo o oo
O O O OO O o000 oOkr OO o o oo
O OO O 0O O 0O o0 oo ook oo o
O OO O 0O O 0O o0 oo okr oo oo
O O O O OO OO oo oo o o kr o
O O O O OO OO oo oo ok oo
O OO OO O O OoOkFr OO0 o o o oo

Ecd dod dodolcalolcal

O O o O o

If we are given the four computational basis states B. Three-qubit: Entangling at distance (1)

Assume we have available coupling Hamiltonians be-
1/2,0,0,1/2,0,0,0,0| tweenA and B and betweerB and C. The qubitB can be
0,0,0.0,1/2,0,0,1/4 " thought pf as an a_ncilla b.eing first entgngleq V\Atlgnd thgn

sent to interact withC. Given a state in whictA is maxi-
mally entangled withB while C is separable from the two
1/2.0,0,- 1/2,0’0,0% (and known, we want to transfer the entanglement from the
, pair (AB) to the pair(AC) leavingB unentangled at the end
0,0,0,0,1/2,0,0,- 1/ of the evolution, without making use of a coupling Hamil-
tonian betweerA and C. Assumep,g(0) is the pure maxi-
mally entangled state

Q{OO,11,23,3}2(0) - %'

|00> — ij = {

02) < e“‘:{

1/2,0,0,1/2,0,0,0,0,}

01) < o=
0n~e {o,o,o,o,— 1/2,0,0,- 1/

. 1/2,0,0,-1/2,0,0,0,0| - . _ _ .

|12) — polk= { 0000-1/2001/ andpc=(1/V2)(\g+\1). The desired task is accomplished in
e e half of the periodrp:Z\f‘Ew, for example, by the following

it is straightforward to check th&-yor behaves as anoT  piecewise constant Hamiltonian:
gate with the second qubit acting as control qubit. Notice that
Henor IS Not traceless, hence we have a Hamiltonian with —-jad, _, te {o,ﬂ?)
h%0. As mentioned above, this is irrelevant because ady(t) = 0 4
adAOO:O, i.e., in the adjoint representation one always ob- lad,(t) = . Ty Ty '
tains the corresponding traceless Hamiltonian. ~iad,, te 22

The structure of the basis used indicates tHator is a
nonlocal operation since it contain$,s (and the spliting We obtain also thapag(0)=pac(7/2) and pg(7/2)=pc(0).
into basis elements is obviously uniquivhile it leaves un- ~ As can be seen from Fig. 1, at/4 the entanglement swaps
entangled the computational basis elements, the same is nisom the pairAB to the pairAC. The scheme can be iterated
true in general for any state. to n qubits.

ComparingUcnor @andRenor the price to pay in order to
use the Stokes tensor parametrization is a larger dimension
of the operator involved. On the other hand, the matrices are
normally sparse and the formalism allows us to perform the While the previous example is rather straightforward, in
same operation also on mixed states. the literature there exist more sophisticated and surprising

} o(0)=0 otherwise.

C. Three-qubit: Entangling at distance (ll)
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1= === -
< = :
o 05 oSG
=3 =
@ @
. 0 0
= =
k=3 5
T _pn5 3 _p.5
» ; : » ; : : H
0 12 3 4 0 1 2 3 4
time (arb. units) time (arb. units)
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Q
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k=3 :
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0 1 2 3 4

time ({arb. units)

FIG. 1. The eigenvalues g (dashed linesand of its three
partial transposesgsolid lines: p'a (upper left ploy, p'® (upper
right), andp'c (lower left).

methods to distribute entanglement. In R@fg] it is shown
that for the three-qubit separable statep,
=5 (o [t ot O, Y, O+ S i1, 11,2 with
[y =(10y+€%™2|1))/\2, it is possible to find a cascade of
two CNOT gates, one witlC as control qubit and acting ok
and the other wittB as control qubit and acting o@, such
that at the end of the operatighiand C are both entangled
but for the whole proces8 remains unentangled. In terms of
the Hamiltonian of thecNoT computed in Sec. V A, this is

PHYSICAL REVIEW A 70, 032331(2004)

eiglp). eig(p's)

0 1 2 3 4 0 1 2 3 4
time (arb. units) time (arb. units)

2
time (arb. units)

FIG. 2. The eigenvalues g5 (dashed linesand of its three
partial transposesgsolid lineg: p' (upper left ploy, p'® (upper
right), andp'c (lower left).

1
Pfin = EAOOO_ XAgz0+ XA 101+ XA 131 = XAz02— XA 23,

+ XA 303+ XA 333,

where p;; is the density after the firstNOT gate andpy, is

the final state. Simulating the evolution of the system, we get
that indeed maintains a positive partial transpa$tPT) for

the whole interval, as can be seen in Fig. 2, whilacquires

a negative partial transpog$iPT) in the first half and keeps
its through the second half. In this second part &sshows

equivalent to the following piecewise constant three-qubitNPT, The behavior can be explained in terms of bipartite
infinitesimal generator, obtained by permuting the indexes oéntanglement of different cuts of the three qubits. Look at

Hcnot @and adding a “0” in the correct slat,

- I(— adASOO_ adA001+ adAaol), te |:O,l)
. V2
—jady(t) = IS
- i(_ adAooa_ adA01o+ adAola)’ te |:T§’_r}

If x=1/(6v2), then

1
Pin = _Z\EAooo"' XAgog+ XA110+ XA 113~ XA220~ XA23
*+ XA 330~ XAggs,

1
Pint = EAOOO_ XAO33+ XAlll_ XA122_ XA212_ XA221

+ XA3p3+ XA330,

°Notice that the time interval is rescaled with respect to the two-
qubit case of Sec. V A because of the effect of the third qubit; see

Eq. (6).

Fig. 2. Since(p™sc)T=p'A, in the first half of the intervalA is
entangling itself with the two-qubit reduced densjiyc.
Such entanglement is bipartite and is not “visible” at the
level of one-qubit reduced densities Bfand C. The same
thing happens betwedd and (AB) in the second half of the
operation. The example is a well-cooked one as for all times
there is no entanglement showing betwéeand (AC) (not
just “at the end” of the gaje The doubt that remains is
whether the final result is truly creation of entanglement be-
tweenA andC, or rather a state in which two different types
of one-qubit/two-qubit bipartite entanglement coexist with-
out interacting with each other. Notice that a thadoT op-
eration onA and C (with either of the two as control qubit
leaves all three qubits with PPT.

APPENDIX A: FORMULAS FOR LIE BRACKETS
OF TENSOR PRODUCT MATRICES

Proposition 1 Given Aq,---,A,,B1,"*,B,e M, the
commutator ofA; ® ... ® A, andB;® ... ® B, is given by

[A® - ®A,B1® - B,]

1
:Efw%W®W@m~®mwm

(A1)

where in each summand the bracket:) is
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[-,-] ktimes,k odd,

{-,-} n-ktimes,

and the sum is over all possiblronrepeatedcombinations
of [+, ] and{-, -} and over all odck e [1,n].

The anticommutator oA;® - ® A, andB;® - .- ® B, is
given by

{A® - ®A, B ® - ®B.}

1
= E Zn__l((AlaBl) ® (A2,By) ® -+ ® (A, By),

(A2)
where in each summand the bracket) is

[-,-] ktimes,k even,

{-,} n-=ktimes,
and the sum is over all possib{eonrepeaty combinations
of [+, -] and{-, -} and over all everke[1,n].

Proof. We will prove the Proposition by induction. The
formula(Al) is obviously true fom=1 (for n=2, 3, and 4 it
is explicitly given below. Assume it is true fom-1 and
write a=A;® - ® A1, =B ® - ®B,_1. Then forn we
have

[a ®ALB® Bn]
=afB® AB,- Ba® BA,

+3(aB® BA + Ba ® ABy)

[A1 ® A;,B; ® By] = A1B; ® AjB, — BiA; ® BoA, = %([Ali B1] ® {Az, By} +{A1,B1} ® [Ay,By)),

PHYSICAL REVIEW A 70, 032331(2004

-3(aB® BA,+ Ba® AB,)

=3[, 8] ® {An, By} +{a, B} ® [A,B)).

If [a,B] contains an odd number of commutators, so does
[a,B]®{A,,B,}. Likewise, if {«a, 8} has an even number of
commutators{«a, 8} ® [A,,B,] has to have an odd one. If
[a,B] and{a, B} contain all possible nonrepeated combina-
tions of commutators and anticommutators, so does the ex-
pression[a®A,, B®B,], and the induction is thus com-
pleted. Concerning the anticommutatgA2), the same
induction arguments can be repeated for the following ex-
pression:

{a® A, B® By}
=aB ® AB,+ Ba ® B A,
+2(aB ® BA, + Ba ® AB,)
- 3(aB © ByA + Ba ® ABy)
=38 ® [Ay,By] +{a, B} ® {A,,By}).

While we are not certain of the complete novelty of the
formulas(Al) and(A2), we are sure that various equivalent
variants of them are well knowrfor low-dimensional ten-
sors. Restricting to recent related literature, check, for ex-
ample,[10,16,24. The commutators for the first cases used
in the paper are given explicitly below,

®And trivial, since it is enough to replao,!tB:%([A,B]+{A,B}) in
the brute force calculation of the commutator/anticommutator and
regroup appropriately.

(A3)

[A; ® Ay ® A3,B; ® B, ® B3] = A1B; ® AsB, ® AgBs — B1A; ® BoA, ® BiA;
= %([AlyBl] ® {Az By} @ {Ag, B3} +{A1,B1} ® [A2,B5] ® {A3,B3} +{A1,B1} ® {Az, By} @ [Ag, B3]
+[A1,B1] ® [A2,B;] ® [Ag,Bg3)), (A4)

(A1 @ Ay ® A3 ® Ay,B; ® B, ® B3 ® By] =A1B; ® AB, ® AgB3 ® AsB,— BiA; @ BoA; @ B3As @ BjJA,
= 2([A1,B1] ® {Az,B} ® {Ag, B3} ® {A;, By} +{A,B1} ® [A;,B,] ® {Ag, B3} ® {A,,B,}
+{A1,B1} ® {A2,Ba} @ [Ag,B3] ® {A4,Ba} +{A1,B1} ® {Ar, By} ® {Ag,B3} ® [A4,B4]
+[A1,B1] ® [Ag,Bo] ® [Ag, B3] ® {Ay, By} +[A1,B1] ® [Ag,B;] @ {Ag, B3} @ [Ag,By]
+[A,B1] ® {A,B,} ® [Ag,B3] ® [Ay,By]

+{A1,B1} ® [Ag,B;] ® [Ag, B3] ® [Ag,B4]). (A5)
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