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For the Stokes tensor parametrization of a multiqubit density operator, we provide an explicit formulation of
the corresponding unitary dynamics at the infinitesimal level. The main advantage of this formalism(clearly
reminiscent of the ideas of “coherences” and “coupling Hamiltonians” of spin systems) is that the pattern of
correlation between qubits and the pattern of infinitesimal correlation are highlighted simultaneously and can
be used constructively for qubit manipulation. For example, it allows us to compute explicitly Rodrigues’
formula for the one-parameter orbits of nonlocal Hamiltonians. The result is easily generalizable to orbits of
Cartan subalgebras and allows us to express the Cartan decomposition of unitary propagators as a linear action
directly in terms of the infinitesimal generators.
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I. INTRODUCTION

The easiest and most promising type of “quantum net-
work,” i.e., of a collection of quantum systems to be manipu-
lated individually or jointly for the purposes of quantum in-
formation processing, is by far composed of qubits, i.e., of
collections of two-level systems. In Ref.[1] we investigated
the use of a particular tensorial representation of such sys-
tems which generalizes the idea of the(affine) Bloch vector
parametrization of a single qubit to two or more qubits, and
which is of widespread use(with minor variations) under
different names, such as cluster operators[2] or, in the lit-
erature on nuclear magnetic resonance(NMR) spectroscopy,
product operators[3,4]. In Ref.[1] this tensor was referred to
as “tensor of coherences” but, following Refs.[5–8], the less
ambiguous name of Stokes tensor will be used thereafter.1

Our Stokes tensor could be considered an unfolding of the
“nonsymmetric real density matrix” of Ref.[9] especially
suited to emphasize the Lie algebraic point of view of the
equations of motion. It is also closely related to multiparticle
spacetime algebra[10].

The scope of the present paper is to discuss how the dif-
ferential equations describing unitary dynamics can be for-
mulated in the Stokes tensor basis. The idea that the unitary
evolution of a qubit density matrix(pure or mixed) given by
the Liouville–von Neumann equation becomes a linear vec-
torial ordinary differential equation for the Bloch vector is
generalized to multiqubit densities. Mathematically, this
could be thought of as “passing to the adjoint representa-

tion,” its starting point being a formula for the decomposi-
tion of nonlocal commutators in terms of local commutators
and anticommutators(see the Appendix); practically it corre-
sponds still to replacing a conjugation action on matrices
with a linear action on the vector obtained by stacking the
columns of the tensor. In particular, when operations are lo-
cal, a unitary transformation reduces to a multilinear action,
i.e., a linear action on each piece of the Stokes tensor. When
instead nonlocal transformations are used, their infinitesimal
generators are no longer acting multilinearly and multispin
correlations are induced. In this case the notation highlights
which qubits are involved in each nonlocal gate. As a matter
of fact, the major advantage of the formalism is that both the
pattern of correlations of the density tensor and the pattern of
the couplings at the infinitesimal level become very transpar-
ent, as both are decomposed with respect to the same basis of
observables. In particular, they both show the same hierarchy
of correlations(that originate from the affine structure of the
tensors and of the corresponding Lie algebras of generators)
which allows one to keep track of the reduced dynamics and
reduced densities in a natural way. The idea of associating
coherences to the degrees of freedom of qubits, and of ma-
nipulating qubits through the corresponding Hamiltonians, is
common for example in the literature on spin systems in
magnetic fields[4,11–14]. However, the principles apply to
any network of qubits. The price to pay is a larger dimension
for the matrices representing the infinitesimal generators:
while the size of the Hamiltonians grows as 2n in the number
n of qubits, in the adjoint representation it grows as 4n=22n.

As an example of the insight gained into the dynamics of
the system, we compute explicitly the integral flow of any
nonlocal(constant) Hamiltonian by means of Rodrigues’ for-
mula [15], which expresses the sum of the exponential series
in terms of the first and second power of the infinitesimal
generator. Since a Cartan subalgebra[16] contains only com-
muting vector fields, the multiparameter orbit of a set of
generators belonging to a Cartan subalgebra also admits an
explicit integration. The Cartan decomposition then becomes
a concatenation of local and nonlocal linear actions that can
be expressed directly in terms of the infinitesimal generators,
rather than of exponentials. Such a decomposition has re-
cently attracted considerable attention as a tool for construct-

*Electronic address: altafini@sissa.it
1Often the concept of “coherence” is associated with the off-

diagonal elements of a density matrix. More generally, it is also
used to identify states that are not eigenstates of a given Hamil-
tonian, and in this case even a nonrandom diagonal density operator
may yield a nontrivial “coherence” contribution. Lendi’s “coher-
ence vector” is defined even more generally as the vector of expec-
tation values of a complete orthonormal set of Hermitian matrices;
see Ref.[25]. The Stokes tensor is just a tensorial version of the
coherence vector parametrization.
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ing universal quantum gates which are optimal in the sense
of minimizing time or complexity[11,17].

A couple of other examples are discussed, mainly focused
on the manipulation of qubits in the presence of entangle-
ment. In particular, we show how to create entanglement at a
distance between qubits that are not directly coupled accord-
ing to two different schemes, one in which the entanglement
is distributed via an entangled ancilla, the other via a(al-
ways) separable ancilla as in Ref.[18].

II. LIE BRACKETS AND ADJOINT REPRESENTATION
FOR SPIN-1

2 SYSTEMS

A. One spin

Consider the rescaled Pauli matrices and identity matrix

l0 =
1
Î2
F1 0

0 1
G, l1 =

1
Î2
F0 1

1 0
G ,

l2 =
1
Î2
F0 − i

i 0
G, l3 =

1
Î2
F1 0

0 − 1
G ,

with the commutation relations

fl0,lkg = 0, fl1,l2g = Î2il3,

fl2,l3g = Î2il1, fl3,l1g = Î2il2

and the anticommutators

hl j,lkj = Î2d jkl0,

hl j,l0j = hl0,l jj = Î2l j , s1d

j ,kP h1,2,3j. The operator “ad” is defined as follows:
adl j

lk=fl j ,lkg=ol=0
3 cjk

l ll, where operations involving the 0
index only produce a null result:c0k

l =cj0
l =cjk

0 =0. Using the
“structure constants”cjk

l we obtain an “adjoint basis” associ-
ated to thel j matrices, given by the four 434 matrices
adl0

, . . . ,adl3
of purely imaginary entriessadl j

dkl=cjk
l ,

adl0
= 0434, adl1

= Î2i3
0 0 0 0

0 0 0 0

0 0 0 − 1

0 0 1 0
4 ,

adl2
= Î2i3

0 0 0 0

0 0 0 1

0 0 0 0

0 − 1 0 0
4, adl3

= Î2i3
0 0 0 0

0 0 − 1 0

0 1 0 0

0 0 0 0
4 .

The Pauli matrices are such that −il1, −il2, and −il3 form a
basis of sus2d, while the −iadl j

, j =1,2,3, form a basis of
sos3d=adsus2d, the adjoint representation ofsus2d. The “anti-
adjoint” operators aadl j

, j =0,1,2,3, canalso be defined in
the same fashion as the adl j

, i.e., by means of 434 matrices
obtained from aadl j

lk=hl j ,lkj=ol=0
3 sjk

l ll, j ,k, l

P h0,1,2,3j, so that a linear representation of aadl j
is given

by saadl j
dkl=sjk

l with the 434 matrices aadl j
easily com-

puted from Eq.(1):

aadl0
= Î23

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
4, aadl1

= Î23
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0
4 ,

aadl2
= Î23

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0
4, aadl3

= Î23
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0
4 .

B. Two spins

Call L jk=l j ^ lk, j ,kP h0,1,2,3j. Up to a constant, the
L jk form the so-calledproduct operators basis[3], and are
subdivided into zero-spin operatorssL00d, one-spin operators
(L01, L02, L03, L10, L20, L30), and two-spin operators(L11,
L12, L13, L21, L22, L23, L31, L32, L33). The set of −iL jk
j ,kP h0,1,2,3j contains a basis of the nine-dimensional ten-
sor product Lie algebrasus2d ^ sus2d plus a basis of the six-
dimensional “tensor sum” Lie algebrassus2d % sus2d arising
from the one-spin operators. Asil0¹sus2d, so
−iL00¹sus2d ^ sus2d and −iL00¹sus2d % sus2d. From Eq.
(A3)

fL jk,Llmg = fl j ^ lk,ll ^ lmg = adL jk
Llm = adl j ^lk

ll ^ lm

= 1
2sfl j,llg ^ hlk,lmj + hl j,llj ^ flk,lmgd

= 1
2sadl j

ll ^ aadlk
lm + aadl j

ll ^ adlk
lmd. s2d

In terms of the adjoint representation, Eq.(2) can be ex-
pressed as a 4-tensor, which in turn is a function of the two
2-tensorscjk

l andsjk
l because

adL jk
= adl j ^lk

= 1
2sadl j

^ aadlk
+ aadl j

^ adlk
d s3d

consists of elements

sadL jk
dlm
pq = 1

2scjl
p

^ skm
q + sjl

p
^ ckm

q d, s4d

so that Eq.(2) becomes

fL jk,Llmg = sadl j ^lk
dlm
pqLpq = 1

2scjl
p

^ skm
q + sjl

p
^ ckm

q dLpq,

s5d

where we have used the summation convention over re-
peated indexes(in the range 0−3). For j Þ0 andkÞ0, the
−iadL jk

of Eq. (3) form a basis of the adjoint representation
of sus2d ^ sus2d, adsus2d^sus2d=sos3d ^ sos3d. The remaining
elements account for the affine structure i.e., for
adsus2d%sus2d=sos3d % sos3d. As cjl

p andskm
q are 434 matrices,

the resulting Kronecker product adL jk
is a 16316 matrix.

However, it has a row and a column entirely composed of
zeros in correspondence ofL00 and, givenL jk with jkÞ00,
∃” Llm with slmdÞ s00d such that adL jk

Llm=L00. Furthermore,
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adL00
being the trivial matrix of all zeros, it is not a basis

element in the adjoint representation. Also in the adjoint rep-
resentation the index 0 in a slot corresponds to trivial dynam-
ics in the corresponding site. For example,

adL j0
=

1

2
sadl j

^ aadl0
+ aadl j

^ 0d =
1
Î2

adl j
^ I4. s6d

C. n spins

In the n-spin case,L j1¯ jn
=l j1

^ ¯ ^ l jn
, jkP h0,1,2,3j,

kP h1, . . . ,nj, are the basis elements. The Lie bracket
fL j1¯ jn

,Lk1¯kn
g can be computed according to the rule(A1).

For example, forn=3 from Eq.(A4),

fL jkl,Lmpqg = 1
4sadl j

lm ^ aadlk
lp ^ aadll

lq

+ aadl j
lm ^ adlk

lp ^ aadll
lq

+ aadl j
lm ^ aadlk

lp ^ adll
lq

+ adl j
lm ^ adlk

lp ^ adll
lqd

= 1
4sadl j

^ aadlk
^ aadll

+ aadl j
^ adlk

^ aadll

+ aadl j
^ aadlk

^ adll

+ adl j
^ adlk

^ adll
dmpq
rst Lrst

= 1
4scjm

r
^ skp

s
^ slq

t + sjm
r

^ ckp
s

^ slq
t

+ sjm
r

^ skp
s

^ clq
t + cjm

r
^ ckp

s
^ clq

t dmpq
rst Lrst

= sadL jkl
dmpq
rst Lrst. s7d

Remarkably, the building blocks needed for then-qubit case
are just the structure constantscjk

l and sjk
l computed above.

For n spins, the affine structure propagates itself throughout
and determines a hierarchy of subalgebras of tensor product
and tensor sum type. The −iL j1¯ jn

, s j1¯ jndÞ s0¯0d, form
a joint basis of the Lie algebrassus2d^n, sus2d
% sus2d^sn−1d , . . . ,sus2d % ¯ % sus2d (plus all factor permu-
tations) and −iadL j1¯ jn

, s j1¯ jndÞ s0¯0d, a joint basis of

adsus2d^n, adsus2d%sus2d^sn−1d , . . . ,adsus2d%¯%sus2d (plus, again, all
factor permutations). In both notations, the number and po-
sition of the indexes “0” uniquely determine which spins are
involved in the −iadL j1¯ jn

.

III. UNITARY EVOLUTION IN TERMS
OF THE STOKES TENSOR

For qubits, the same basis elementsL j1¯ jn
that describe

the infinitesimal generators can also be used for the density
operators. This is well known in the literature on spin sys-
tems [3], and can be formalized in terms of 4343 ¯ 34
tensors which we call Stokes tensors. See Refs.[1,2,6,19–21]
for an overview. The purpose of this section is to show how
Stokes tensors and adjoint representations fit together in the
description of the unitary dynamics of multiqubit densities.

A. Density operators and Stokes tensors

This section follows Ref.[1]. TheL j1¯ jn
form a complete

orthonormal set of Hermitian matrices and can be used to

obtain an affine tensorial representation of the density opera-
tor of n qubits: r=% j1¯ jnL j1¯ jn

, jkP h0,1,2,3j, k
P h1, . . . ,nj, with % j1¯ jn=trsrL j1¯ jn

d the expectation value
for the observableL j1¯ jn

. This representation has several
advantages which are briefly recalled below.

(i) It captures all degrees of freedom of a density opera-
tor.

(ii ) Each term% j1¯ jn in the tensor depends on a certain
number of qubits: this is uniquely determined by the number
of nonzero indexes in the sequencej1¯ jn. The pattern of
nonzero indexes also identifies which qubits are involved.

(iii ) All correlations of all orders and all reduced densi-
ties are already contained in the tensor: tracing out a qubit
means collapsing the corresponding index to 0 and rescaling
everything by Î2. For example, if rA2¯An

=trA1
srd

=% j2¯ jnL j2¯ jn
, then% j2¯ jn=Î2%0j2¯ jn;

(iv) Since

trsL jkLlmd = d jldkm, s8d

j ,k, l ,mP h0,1,2,3j, the degree of mixing becomes the Eu-
clidean norm of% j1¯ jn,

trsrd = o
j1,. . .,jn=0

3

s% j1¯ jnd2 s9d

and hence, since%0¯0=s1/Î2dn, for s j1¯ jndÞ s0¯0d the

tensor % j1¯ jnPSr
4n−2,R4n−1 with 0ø r øÎ1−s%0¯0d2

=Î1−s1/2dn.
(v) Complete mixing corresponds tor =0 (i.e., to the null

tensor except for the affine constant%0¯0).
(vi) Pure states correspond tor =Î1−s1/2dn.
(vii ) Factorizability corresponds to% j1¯ jn=%A1

j1 %A2

j2
¯%An

jn ,
where%A1

j1 =sÎ2dn−1% j10¯0 is the four-vector of the reduced
densityrA1

=trA2¯An
srd and so on.2

(viii ) Partial transposition of a qubit becomes a change of
sign in the terms having index 2 in the corresponding slot,
for example

rTA1 = %0j2¯ jnL0j2¯ jn
+ %1j2¯ jnL1j2¯ jn

− %2j2¯ jnL2j2¯ jn

+ %3j2¯ jnL3j2¯ jn
s10d

and so on.
(ix) Checking bipartite entanglement can be done by the

simple test(10).

B. Liouville–von Neumann equation

The Liouville–von Neumann equation for then-qubits
densityr is

2In the context of our parametrization, the term “tensor” is not
equivalent to the notion of “density which is a tensor product” and
should not be confused with it. Every density admits a Stokes ten-
sor, even if it is nonfactorizable or nonseparable. In these cases, the
corresponding Stokes tensors will be nonfactorizable or nonsepa-
rable.
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ṙ = − ifH,rg = − iadHsrd, s11d

whereH=H† is the Hamiltonian of the system. From Sec. II,
we have thatH=hj1¯ jnL j1¯ jn

, jkP h0,1,2,3j, kP h1, . . . ,nj.
If we have two qubits, then, in terms of the Stokes tensor,

Eq. (11) corresponds to

%̇pq = − ihjksadL jk
dlm
pq%lm = −

ihjk

2
scjl

p
^ skm

q + sjl
p

^ ckm
q d%lm.

s12d

In order to show Eq.(12), derive%pq=trsrLpqd and use Eqs.
(4) and (8):

%̇pq = trsṙLpqd = trs− ifH,rgLpqd = trs− ihjkfL jk,Llmg%lmLpqd

= trS−
i

2
hjkscjl

r
^ skm

s + sjl
r

^ ckm
s dLrs%

lmLpqD
=−

i

2
hjkscjl

r
^ skm

s + sjl
r

^ ckm
s d%lmtrsLrsLpqd

= −
i

2
hjkscjl

r
^ skm

s + sjl
r

^ ckm
s d%lmdrpdsq

= −
i

2
hjkscjl

p
^ skm

q + sjl
p

^ ckm
q d%lm.

The component of the Hamiltonian alongL00 is irrelevant:
even if h00Þ0 it has no effect, since −ih00adL00

=0. The
meaning is similar to the single-spin case: global phases are
neglected in Eqs.(11) and (12).

Since Eq.(12) is a linear system, if the coefficientshjk are
constant the integration can be carried out explicitly,

%pqstd = se−ithjkadL jkdlm
pq%lms0d. s13d

Notice that when two-spin generators are lacking,hjk=0
∀ j Þ0 andkÞ0, i.e., when only local operations and classi-
cal communication(LOCC) are performed, the exponential
in Eq. (13) splits. In fact, fL j0,L0kg=0 and therefore the
infinitesimal generatorsL j0 and L0k can be “reduced” as
well. Using Eq.(6), the unitary propagator in Eq.(13) be-
comes

e−itshj0adL j0
+h0kadL0k

d

= se−ithj0adL j0dse−ith0kadL0kd

= „se−itshj0/Î2dadl jd ^ I4…„I4 ^ se−itsh0k/Î2dadlkd…,

where the factor 1/Î2 comes from Eq.(6). Therefore,

se−itshj0/Î2dadl jd ^ se−itsh0k/Î2dadlkd

P F1 0

0 SOs3d G ^ F1 0

0 SOs3d G , s14d

which allows the state to evolve on at most a six-parameter
orbit sitting inside the 15-dimensional affine sphereSr

15, with
r defined as in Eq.(9). If rs0d is separable, then so is the
resultrstd of evolving it under Eq.(14) for all t, and hence
the six-dimensional manifold contains all the separable
states. When instead the Hamiltonian hashjkÞ0 for j Þ0

andkÞ0, the evolution of the two qubits becomes coupled.
Similarly to the two-qubit case, if we haven qubits we

obtain

%̇p1¯pn = − ihj1¯ jnsadL j1¯ jn
dk1¯kn

p1¯pn%k1¯kn,

where adL j1¯ jn
is computed as in Sec. II C.

IV. INTEGRAL FLOW OF NONLOCAL HAMILTONIANS

We first restrict to two qubits, although all arguments gen-
eralize ton qubits. To begin with, we give an explicit for-
mula for the integral of each “elementary” generatorL jk.
From Sec. II A, we have that adl j

aadl j
=aadl j

adl j
=0.

This implies that the series expansion exps−itadL jk
d

=op=0
` (s−itdp/p!)adL jk

p has a particularly simple expression,
since for allp

adL jk

p =
1

2psadl j

p
^ aadlk

p + aadl j

p
^ adlk

p d.

The powers of adl j
and aadl j

are easily computed since adl j

2

and aadl j

2 are diagonal and “complementary”:
(i) if j =1, adl1

2 =2sd33+d44d, aadl1

2 =2sd11+d22d;

(ii ) if j =2, adl2

2 =2sd22+d44d, aadl2

2 =2sd11+d33d;

(iii ) if j =3, adl3

2 =2sd22+d33d, aadl3

2 =2sd11+d44d;
so that adl j

2 +aadl j

2 =2I4. Cubic powers instead are adl j

3

=2adl j
and aadl j

3 =2aadl j
, hence adL jk

3 =adL jk
. We can there-

fore explicitly write down the sum of the series as

exps− itadL jk
d = I4 ^ I4 − iSt −

t3

3!
+

t5

5!
− ¯DadL jk

+ S−
t2

2!
+

t4

4!
− ¯DadL jk

2

or, adding and subtracting adL jk

2 ,

exps− itadL jk
d = I4 ^ I4 − i sinstdadL jk

− „1 − cosstd…adL jk

2 ,

s15d

where the extra terms added are needed because the zero-
order terms do not match:I4 ^ I4ÞadL jk

2 . Notice that a for-
mula equivalent to Eq.(15) was used for the same purposes
as ours in Ref.[9]. Both are tensorial versions of Rodrigues’
formula for rotations; see Ref.[22], p. 291 or[23], p. 28. The
splitting is into skew-symmetric
s−iadL jk

d and symmetric parts(I4 ^ I4 and adL jk

2 ) of the

flow.3 Notice that both −iadL jk
and adL jk

2 are sums of tensor
products of matrices. The nonlocality of the Hamiltonian of
Eq. (15) is reflected in the fact that we do not obtain a

3The sign difference with respect to the standard SOs3d formula is
due to the fact that here the skew-symmetric generator is −iadL jk

.
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“single” tensor product but rather a sum.4 Clearly the overall
evolution of Eq. (15) is orthogonal. However, the single
pieces do not describe rotations, either locally nor globally.

The same argument can be repeated for any number
of qubits. For example, for three qubits we have
exps−itadL jkl

d=op=0
` (s−itdp/p!)adL jkl

p , with

adL jkl

p =
1

4psadl j

p
^ aadlk

p
^ aadll

p + aadl j

p
^ adlk

p
^ aadll

p

+ aadl j

p
^ aadlk

p
^ adll

p + adl j

p
^ adlk

p
^ adll

p d, s16d

where now adL jkl

3 = 1
2adL jkl

. The sum of the series is then

exps− itadL jkl
d = I4

^3 − iÎ2 sinS t
Î2

DadL jkl

− 2X1 − cosS t
Î2

DCadL jkl

2 . s17d

So far we have only considered a single “coordinate di-
rection” (L jk for the two-qubit case). The formulas, however,
extend in a straightforward manner to linear combinations of
commuting generators, even depending on more than one
parameter. A maximal orbit of integrable flow is obtained
obviously in correspondence to a Cartan subalgebra[16,17],
i.e., a maximal commuting subalgebra in the Lie algebra of
nonlocal operations of the system. For the two-qubit case, let
us concentrate on the “nonlocal subalgebra” adsus2d^sus2d
=sos3d ^ sos3d. A Cartan subalgebra is, for example, given
by adh=spanh−iadL11

,−iadL22
,−iadL33

j (or by spanh−iadL12
,

−iadL21
,−iadL33

j, etc.) where h is a Cartan subalgebra in
sus2d ^ sus2d: h=spanh−iL11,−iL22,−iL33j. The three-
parameter orbits of such subalgebra are integrable, as can be
seen by the splitting of the exponential,

exp„− isb11adL11
+ b22adL22

+ b33adL33
d…

= exps− ib11adL11
dexps− ib22adL22

dexps− ib33adL33
d

s18d

for real b j j . The “marginal” subalgebra of local operations
sos3d % sos3d does not commute with the Cartan subalgebra.
It is known [16] that fsos3d % sos3d ,adhg generates the entire
15-dimensional Lie algebrasos3d % sos3døsos3d ^ sos3d and
that “exponentiating” this splitting gives the Cartan decom-
position of the corresponding Lie group. When an arbitrary
two-qubit gate, call itUc, is constructed by means of the
Cartan decomposition of SUs4d, then

Uc = U1a ^ U2aexp„− isb11L11 + b22L22 + b33L33d…

3U1g ^ U2g

with Uja ,UjgPSUs2d, j =1,2, and itsaction on a density
operator is by conjugation. With our formalism, such a con-
jugation action becomes a linear action, obtained by the con-

catenation of bilocal exponentials of the form shown in Eq.
(14) and of the nonlocal exponential of Eq.(18). In other
words, any unitary operation acting on the Stokes tensor of a
two-qubit density can be written as a product of the follow-
ing form:

se−isa j0/Î2dadl jd ^ se−isa0k/Î2dadlkd

3exps− ib11adL11
dexps− ib22adL22

dexps− ib33adL33
d

3se−isg j0/Î2dadl jd ^ se−isg0k/Î2dadlkd

for reala jk, b j j , andg jk. Each exponential can be replaced by
the corresponding sum of tensors[given by Eq.(15) for the
nonlocal pieces and by exps−itadl j

d= I4−si /Î2dsinsÎ2tdadl j

− s1/2d(1−cossÎ2td)adl j

2 for the one-parameter orbit of a
single qubit].

V. EXAMPLES

In Sec. V A it is shown how the discrete unitary propaga-
tor corresponding to a standard two-qubit gate, the controlled
NOT (CNOT) gate, is expressed in terms of the Stokes tensor.
In the three-qubit example of Sec. V B, entanglement be-
tween two “distant” qubits is achieved by indirect coupling
through an entangled ancilla. In Sec. V C, the scheme of Ref.
[18] is used for the same purposes, but in this scheme the
ancilla remains separable for all times.

A. CNOT gate

It is well known that since the elementary gates of a quan-
tum computer are discrete unitary operations, they can be
written in terms of the corresponding infinitesimal Hamilto-
nians. In particular, in the literature on quantum information
processing by means of NMR spectroscopy[4] this was done
in terms of the product operators basis, of which our formal-
ism is just a variation. For example, in the computational
basis of two qubitsu00l, u01l, u10l, u11l, the Hamiltonian of
the CNOT gate

UCNOT = 3
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0
4

is given by

HCNOT =
p

23
0 0 0 0

0 1 0 − 1

0 0 0 0

0 − 1 0 1
4 .

In terms of the L jk, this is HCNOT=p /2sL00−L03−L10

+L13d, and therefore for% jk we have the orthogonal matrix

RCNOT = e−isp/2dsadL00
−adL03

−adL10
+adL13

d,

which computed by means of Eq.(3) yields

4This does not mean that we have separable superoperators[26],
however, since unitary operators yield “pure” quantum operations
[27].

REPRESENTING MULTIQUBIT UNITARY EVOLUTIONS… PHYSICAL REVIEW A 70, 032331(2004)

032331-5



RCNOT =







1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 − 1 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 − 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0





.

If we are given the four computational basis states

u00l ↔ % jk = H1/2,0,0,1/2,0,0,0,0,

0,0,0,0,1/2,0,0,1/2
J ,

u01l ↔ % jk = H1/2,0,0,− 1/2,0,0,0,0,

0,0,0,0,1/2,0,0,− 1/2
J ,

u01l ↔ % jk = H 1/2,0,0,1/2,0,0,0,0,

0,0,0,0,− 1/2,0,0,− 1/2
J ,

u11l ↔ % jk = H1/2,0,0,− 1/2,0,0,0,0,

0,0,0,0,− 1/2,0,0,1/2
J ,

it is straightforward to check thatRCNOT behaves as aCNOT

gate with the second qubit acting as control qubit. Notice that
HCNOT is not traceless, hence we have a Hamiltonian with
h00Þ0. As mentioned above, this is irrelevant because
adL00

=0, i.e., in the adjoint representation one always ob-
tains the corresponding traceless Hamiltonian.

The structure of the basis used indicates thatHCNOT is a
nonlocal operation since it containsL13 (and the splitting
into basis elements is obviously unique). While it leaves un-
entangled the computational basis elements, the same is not
true in general for any state.

ComparingUCNOT andRCNOT, the price to pay in order to
use the Stokes tensor parametrization is a larger dimension
of the operator involved. On the other hand, the matrices are
normally sparse and the formalism allows us to perform the
same operation also on mixed states.

B. Three-qubit: Entangling at distance (I)

Assume we have available coupling Hamiltonians be-
tweenA and B and betweenB and C. The qubitB can be
thought of as an ancilla being first entangled withA and then
sent to interact withC. Given a state in whichA is maxi-
mally entangled withB while C is separable from the two
(and known), we want to transfer the entanglement from the
pair sABd to the pairsACd leavingB unentangled at the end
of the evolution, without making use of a coupling Hamil-
tonian betweenA and C. AssumerABs0d is the pure maxi-
mally entangled state

%h00,11,23,32js0d = 1
2 ,

% jks0d = 0 otherwise.

andrC=s1/Î2dsl0+l1d. The desired task is accomplished in
half of the periodtp=2Î2p, for example, by the following
piecewise constant Hamiltonian:

− iadHstd =5− iadL033
, t P F0,

tp

4
D

− iadL220
, t P F tp

4
,
tp

2
G .

We obtain also thatrABs0d=rACsp /2d and rBsp /2d=rCs0d.
As can be seen from Fig. 1, attp/4 the entanglement swaps
from the pairAB to the pairAC. The scheme can be iterated
to n qubits.

C. Three-qubit: Entangling at distance (II)

While the previous example is rather straightforward, in
the literature there exist more sophisticated and surprising
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methods to distribute entanglement. In Ref.[18] it is shown
that for the three-qubit separable staterin

= 1
6sok=0

3 uck,c−k,0lkck,c−k,0u+o j=0
1 u j , j ,1lk j , j ,1ud with

uckl=su0l+eikp/2u1ld /Î2, it is possible to find a cascade of
two CNOT gates, one withC as control qubit and acting onA
and the other withB as control qubit and acting onC, such
that at the end of the operationA andC are both entangled
but for the whole processB remains unentangled. In terms of
the Hamiltonian of theCNOT computed in Sec. V A, this is
equivalent to the following piecewise constant three-qubit
infinitesimal generator, obtained by permuting the indexes of
HCNOT and adding a “0” in the correct slot,5

− iadHstd =5− is− adL300
− adL001

+ adL301
d, t P F0,

p

Î2
D

− is− adL003
− adL010

+ adL013
d, t P F p

Î2
,
2p

Î2
G .

If x=1/s6Î2d, then

rin =
1

2Î2
L000+ xL003+ xL110+ xL113− xL220− xL223

+ xL330− xL333,

rint =
1

2Î2
L000− xL033+ xL111− xL122− xL212− xL221

+ xL303+ xL330,

rfin =
1

2Î2
L000− xL030+ xL101+ xL131− xL202− xL232

+ xL303+ xL333,

whererint is the density after the firstCNOT gate andrfin is
the final state. Simulating the evolution of the system, we get
that indeedB maintains a positive partial transpose(PPT) for
the whole interval, as can be seen in Fig. 2, whileA acquires
a negative partial transpose(NPT) in the first half and keeps
its through the second half. In this second part alsoC shows
NPT. The behavior can be explained in terms of bipartite
entanglement of different cuts of the three qubits. Look at
Fig. 2. SincesrTBCdT=rTA, in the first half of the interval,A is
entangling itself with the two-qubit reduced densityrBC.
Such entanglement is bipartite and is not “visible” at the
level of one-qubit reduced densities ofB and C. The same
thing happens betweenC andsABd in the second half of the
operation. The example is a well-cooked one as for all times
there is no entanglement showing betweenB and sACd (not
just “at the end” of the gate). The doubt that remains is
whether the final result is truly creation of entanglement be-
tweenA andC, or rather a state in which two different types
of one-qubit/two-qubit bipartite entanglement coexist with-
out interacting with each other. Notice that a thirdCNOT op-
eration onA andC (with either of the two as control qubit)
leaves all three qubits with PPT.

APPENDIX A: FORMULAS FOR LIE BRACKETS
OF TENSOR PRODUCT MATRICES

Proposition 1. Given A1,¯ ,An,B1,¯ ,BnPMm, the
commutator ofA1 ^ . . . ^ An andB1 ^ . . . ^ Bn is given by

fA1 ^ ¯ ^ An,B1 ^ ¯ ^ Bng

= o 1

2n−1„sA1,B1d ^ sA2,B2d ^ ¯ ^ sAn,Bnd…,

sA1d

where in each summand the brackets· , ·d is

5Notice that the time interval is rescaled with respect to the two-
qubit case of Sec. V A because of the effect of the third qubit; see
Eq. (6).

FIG. 1. The eigenvalues ofr (dashed lines) and of its three
partial transposes(solid lines): rTA (upper left plot), rTB (upper
right), andrTC (lower left).

FIG. 2. The eigenvalues ofr (dashed lines) and of its three
partial transposes(solid lines): rTA (upper left plot), rTB (upper
right), andrTC (lower left).
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f·, ·g k times, k odd,

h·, ·j n − k times,

and the sum is over all possible(nonrepeated) combinations
of f· , ·g and h· , ·j and over all oddkP f1,ng.

The anticommutator ofA1 ^ ¯ ^ An and B1 ^ ¯ ^ Bn is
given by

hA1 ^ ¯ ^ An, B1 ^ ¯ ^ Bnj

= o 1

2n−1„sA1,B1d ^ sA2,B2d ^ ¯ ^ sAn,Bnd…,

sA2d

where in each summand the brackets· , ·d is

f·, ·g k times, k even,

h·, ·j n − k times,

and the sum is over all possible(nonrepeatd) combinations
of f· , ·g and h· , ·j and over all evenkP f1,ng.

Proof. We will prove the Proposition by induction. The
formula (A1) is obviously true forn=1 (for n=2, 3, and 4 it
is explicitly given below). Assume it is true forn−1 and
write a=A1 ^ ¯ ^ An−1, b=B1 ^ ¯ ^ Bn−1. Then for n we
have

fa ^ An,b ^ Bng

= ab ^ AnBn − ba ^ BnAn

+ 1
2sab ^ BnAn + ba ^ AnBnd

− 1
2sab ^ BnAn + ba ^ AnBnd

= 1
2sfa,bg ^ hAn,Bnj + ha,bj ^ fAn,Bngd.

If fa ,bg contains an odd number of commutators, so does
fa ,bg ^ hAn,Bnj. Likewise, if ha ,bj has an even number of
commutators,ha ,bj ^ fAn,Bng has to have an odd one. If
fa ,bg and ha ,bj contain all possible nonrepeated combina-
tions of commutators and anticommutators, so does the ex-
pressionfa ^ An,b ^ Bng, and the induction is thus com-
pleted. Concerning the anticommutator(A2), the same
induction arguments can be repeated for the following ex-
pression:

ha ^ An,b ^ Bnj

= ab ^ AnBn + ba ^ BnAn

+ 1
2sab ^ BnAn + ba ^ AnBnd

− 1
2sab ^ BnAn + ba ^ AnBnd

= 1
2sfa,bg ^ fAn,Bng + ha,bj ^ hAn,Bnjd.

While we are not certain of the complete novelty of the
formulas(A1) and(A2), we are sure that various equivalent
variants of them are well known6 for low-dimensional ten-
sors. Restricting to recent related literature, check, for ex-
ample,[10,16,24]. The commutators for the first cases used
in the paper are given explicitly below,

fA1 ^ A2,B1 ^ B2g = A1B1 ^ A2B2 − B1A1 ^ B2A2 = 1
2sfA1,B1g ^ hA2,B2j + hA1,B1j ^ fA2,B2gd, sA3d

fA1 ^ A2 ^ A3,B1 ^ B2 ^ B3g = A1B1 ^ A2B2 ^ A3B3 − B1A1 ^ B2A2 ^ B3A3

= 1
4sfA1,B1g ^ hA2,B2j ^ hA3,B3j + hA1,B1j ^ fA2,B2g ^ hA3,B3j + hA1,B1j ^ hA2,B2j ^ fA3,B3g

+ fA1,B1g ^ fA2,B2g ^ fA3,B3gd, sA4d

fA1 ^ A2 ^ A3 ^ A4,B1 ^ B2 ^ B3 ^ B4g = A1B1 ^ A2B2 ^ A3B3 ^ A4B4 − B1A1 ^ B2A2 ^ B3A3 ^ B4A4

= 1
8sfA1,B1g ^ hA2,B2j ^ hA3,B3j ^ hA4,B4j + hA1,B1j ^ fA2,B2g ^ hA3,B3j ^ hA4,B4j

+ hA1,B1j ^ hA2,B2j ^ fA3,B3g ^ hA4,B4j + hA1,B1j ^ hA2,B2j ^ hA3,B3j ^ fA4,B4g

+ fA1,B1g ^ fA2,B2g ^ fA3,B3g ^ hA4,B4j + fA1,B1g ^ fA2,B2g ^ hA3,B3j ^ fA4,B4g

+ fA1,B1g ^ hA2,B2j ^ fA3,B3g ^ fA4,B4g

+ hA1,B1j ^ fA2,B2g ^ fA3,B3g ^ fA4,B4gd. sA5d
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